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a b s t r a c t 

Functional connectivity (FC) networks are typically inferred from resting-state fMRI data using the Pearson cor- 
relation between BOLD time series from pairs of brain regions. However, alternative methods of estimating func- 
tional connectivity have not been systematically tested for their sensitivity or robustness to head motion artifact. 
Here, we evaluate the sensitivity of eight different functional connectivity measures to motion artifact using 
resting-state data from the Human Connectome Project. We report that FC estimated using full correlation has a 
relatively high residual distance-dependent relationship with motion compared to partial correlation, coherence, 
and information theory-based measures, even after implementing rigorous methods for motion artifact mitiga- 
tion. This disadvantage of full correlation, however, may be offset by higher test-retest reliability, fingerprinting 
accuracy, and system identifiability. FC estimated by partial correlation offers the best of both worlds, with low 

sensitivity to motion artifact and intermediate system identifiability, with the caveat of low test-retest reliability 
and fingerprinting accuracy. We highlight spatial differences in the sub-networks affected by motion with dif- 
ferent FC metrics. Further, we report that intra-network edges in the default mode and retrosplenial temporal 
sub-networks are highly correlated with motion in all FC methods. Our findings indicate that the method of es- 
timating functional connectivity is an important consideration in resting-state fMRI studies and must be chosen 
carefully based on the parameters of the study. 

1

 

t  

d  

s  

2  

l  

A  

H  

o  

T  

V  

t  

G  

l  

i  

m  

o  

t  

(  

d  

m  

a  

G
 

d  

t  

h
R
A
1

. Introduction 

Ever since the initial observation of correlations in spontaneous func-
ional magnetic resonance imaging (fMRI) blood-oxygen level depen-
ent (BOLD) signals acquired from subjects at rest, the field of resting-
tate functional connectivity has grown exponentially ( Buckner et al.,
013 ). Functional connectivity has been used as a tool to explore
arge-scale features of human brain organization ( Achard et al., 2006 ;
chard and Bullmore, 2007 ; Morgan et al., 2017 ; van den Heuvel and
ulshoff Pol, 2010 ; Vértes et al., 2012 ), how this organization changes
ver the course of development ( Gu et al., 2015 ; Morgan et al., 2018 ;
homason, 2020 ; Tooley et al., 2020 ; van den Heuvel et al., 2018 ;
értes and Bullmore, 2015 ; Wheelock et al., 2019 ), and the associa-

ion of such organization with individual behavior ( Finn et al., 2015 ;
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ratton et al., 2018 ). However, head motion artifact is a pervasive prob-
em in functional connectivity analysis, decreasing certainty of find-
ngs and impacting subsequent interpretations. In-scanner head move-
ents result in structured noise that leads to the spurious identification

f putative functional connections, a problem further compounded by
he fact that some individuals move systematically more than others
 Power et al., 2015 ). Consequently, a number of research groups have
eveloped statistical preprocessing methods to mitigate the impact of
otion artifact; the development of such methods is an ongoing and

ctive field of research in its own right ( Burgess et al., 2016 ; Caballero-
audes and Reynolds, 2017 ; Ciric et al., 2017 ; Parkes et al., 2018 ). 

While much effort has been directed toward developing effective
enoising pipelines to mitigate motion artifact, the subsequent estima-
ion of functional connectivity in fMRI data has remained fairly con-
 Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA. 
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tant. Functional connectivity (FC) between brain regions is typically
stimated through a Pearson correlation between the BOLD time se-
ies of two regions of interest (ROIs). However, functional connectiv-
ty is formally defined as any statistical relation between time series
 Friston, 2011 ) and there exist many other statistical methods to com-
ute similarity between time series. A few examples include coherence
ethods ( Beauchene et al., 2018 ; Bullmore et al., 2004 ; Sun et al.,
004 ), which compute similarity in frequency space, and methods based
n information theory ( Quiroga et al., 2001 ; Salvador et al., 2005 ;
hannon, 1948 ), which quantify the amount of shared information be-
ween signals. 

The performance of different FC estimation methods has been eval-
ated using generative models for a variety of neurophysiological data,
ncluding simulated BOLD signals ( Smith et al., 2011 ; Wang et al.,
014 ). These studies have typically focused on the ability of FC esti-
ation methods to recover the underlying network structure from sim-
lated BOLD data. Major findings include that full or partial correlation
uccessfully recovers the underlying network structure in simulated data
 Smith et al., 2011 ). It is perhaps due to these results, and the associated
ase of implementation, that correlation-based methods are so popular
n the field. Yet, very few studies have used real fMRI data to compare
he differential sensitivity or robustness of different FC estimation meth-
ds to motion artifact. The field awaits an appraisal of different FC esti-
ation approaches with regard to their ability to overcome the specific

ype of noise introduced by motion artifact in fMRI data ( Ciric et al.,
018 ; Power et al., 2015 ). 

In the present study, we used resting-state fMRI data from the Hu-
an Connectome Project (HCP) to evaluate eight different FC estimation
ethods: Pearson correlation, Spearman correlation, partial correlation,
ikhonov partial correlation, coherence, wavelet coherence, mutual in-
ormation in the time domain, and mutual information in the frequency
omain. The sensitivity of each of these methods to subject motion and
heir success in identifying network structure was evaluated using five
enchmarks: (a) correlations of subject motion with edge weights af-
er denoising (QC-FC correlations), (b) the distance-dependence of QC-
C correlations, (c) the degree to which canonical brain systems could
e identified through modularity maximization (system identifiability),
d) the extent to which FC estimates from one scan session could be used
o identify subjects in other scan sessions (fingerprinting accuracy), and
e) the extent to which the FC estimates could be reproduced in suc-
essive scans (test-retest reliability). Collectively, these efforts serve to
nform our usage of FC estimation methods, and their relative strengths
nd weaknesses. 

. Methods 

In order to evaluate the differential sensitivity of different FC estima-
ion methods to motion, we first applied common denoising pipelines to
 large resting-state dataset, estimated functional connectivity matrices
sing eight different methods, and finally compared the performance of
ach of these estimates using a set of common quality control (QC) mea-
ures. Details of data preprocessing, FC estimation, and QC measures are
escribed below. 

.1. Data and preprocessing 

In this study, we leveraged data from the S1200 release of the Hu-
an Connectome Project (HCP) ( Van Essen et al., 2013 ), a multi-site

onsortium that collected extensive MRI, behavioral, and demographic
ata from a large cohort of over 1000 subjects. As part of the HCP pro-
ocol, subjects underwent four separate resting-state scans, which in-
luded both left-right (REST1_LR, REST2_LR) and right-left (REST1_RL,
EST2_RL) phase encoding directions. All functional connectivity data
nalyzed in this report came from these scans. 

We used the ICA-FIX resting-state data provided by the Hu-
an Connectome Project, which used 24-parameter regression fol-
2 
owed by ICA + FIX denoising to remove nuisance and motion signals
 Griffanti et al., 2014 ; Salimi-Khorshidi et al., 2014 ). In addition, we re-
oved the mean global signal and bandpass filtered the time series using
 fifth-order Butterworth filter in both forward and reverse directions to
etain frequencies between 0.009 and 0.08 Hz. However, all results in
he main text are reported for 4 preprocessing variants defined by the in-
lusion and exclusion of GSR and bandpass filtering. Further, we did not
nalyze subjects for whom greater than 50% of frames had a framewise
isplacement above 0.2 millimeters or a derivative root mean square
bove 75, leaving 778 subjects from REST1_LR, 800 from REST1_RL,
76 from REST2_LR, and 763 from REST2_RL. This threshold was cho-
en because it is typical for analyses of functional connectivity, and we
anted our conclusions about motion and functional connectivity to ap-
ly to common analysis pipelines ( Bertolero et al., 2019 ; Schaefer et al.,
018 ; Vértes et al., 2016 ; Whitaker et al., 2016 ). 

For each scan, we used the mean relative RMS (root-mean squared)
isplacement during realignment through MCFLIRT, provided by the
uman Connectome Project, as our primary measure of motion. Recent

tudies have shown that multiband datasets with high temporal resolu-
ion like the HCP contain additional respiratory artifacts that manifest
n the realignment parameters (RPs) typically used to calculate sum-
ary statistics of head motion ( Agrawal et al., 2020 ; Fair et al., 2020 ;
ower et al., 2019 ). To mitigate this possibility, we calculated mean
ramewise displacement (FD) after bandpass filtering RPs between 0.3
nd 0.4 Hz, and used this measure as an additional summary statistic of
otion ( Fair et al., 2020 ). Summary statistics of the cohorts analyzed,

nd their head motion are shown in Table 1 . 
From the preprocessed data in CIFTI space, we estimated mean BOLD

ime series using two cortical parcellation schemes: the 333-node Gor-
on parcellation ( Gordon et al., 2016 ) and the 100-node Schaefer parcel-
ation ( Schaefer et al., 2018 ) to test motion-related effects in networks
f different sizes. We used sub-networks defined in the Gordon parcel-
ation ( Gordon et al., 2016 ) to evaluate motion-related effects within
anonically defined sub-networks. For all scans, the MSMAll registration
as used, and the mean time series of vertices on the cortical surface

fsL32K) in each parcel was calculated. 

.2. Description of functional connectivity measures 

In the present study, we evaluated eight different methods for es-
imating functional connectivity from BOLD time series data. Here we
rovide a brief overview of the methods evaluated. 

.2.1. Pearson’s correlation coefficient 

The Pearson correlation coefficient is a simple and commonly ap-
lied method to evaluate linear correlation between two time series. It
s defined as the covariance between the two signals over time divided
y the product of their standard deviations. Formally, the zero-order
without lag) Pearson correlation, 𝜌𝑖𝑗 , between the signals of regions 𝑖
nd 𝑗 is given by 

𝑖𝑗 = 

𝑐𝑜 𝑣 𝑖𝑗 ( 𝑡 ) √
𝑣𝑎 𝑟 𝑖 ( 𝑡 ) .𝑣𝑎 𝑟 𝑗 ( 𝑡 ) 

. 

Note that 𝜌𝑖𝑗 varies in the interval [-1, 1] with positive values indi-
ating positive correlation and negative values indicating negative cor-
elation. 

.2.2. Spearman’s rank correlation coefficient 

This method evaluates the rank correlation between two time series,
roviding an estimate of the extent to which one time series is a mono-
onic function of the other. The zero-order Spearman rank correlation,
 𝑖𝑗 , between the signals of regions 𝑖 and 𝑗 is given by the Pearson corre-
ation between their respective rankings, 

 𝑖𝑗 = 𝜌𝑅 𝑖 , 𝑅 𝑗 
= 

𝑐𝑜𝑣 
(
𝑅 𝑖 , 𝑅 𝑗 

)
√ 

𝑣𝑎𝑟 
(
𝑅 𝑖 

)
.𝑣𝑎𝑟 

(
𝑅 𝑗 

) , 
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Table 1 

Summary statistics of motion in a cohort taken from the HCP S1200 release. 

Scan REST1_LR REST1_RL REST2_LR REST2_RL 

Number of subjects analyzed (n) 778 800 776 763 
Mean relative RMS motion (average) 0.079 0.077 0.078 0.079 
Mean relative RMS motion (standard deviation) 0.022 0.021 0.021 0.023 
Mean FD from bandpass-filtered realignment parameters (average) 0.081 0.078 0.080 0.082 
Mean FD from bandpass-filtered realignment parameters (standard deviation) 0.022 0.020 0.020 0.023 
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here 𝑅 𝑖 and 𝑅 𝑗 are the rankings of the individual time series from low
o high values. Note that 𝑟 𝑖𝑗 varies in the interval [-1, 1] with 𝑟 𝑖𝑗 = +1
ndicating a perfect monotonic relationship between the time series of
egion 𝑖 and the time series of region 𝑗. 

.2.3. Partial correlation coefficient 

Partial correlation is a measure of the linear correlation between
wo time series after regressing out the time series of all other nodes
n the network. Partial correlation has been proposed as an effective
ethod to distinguish between direct and indirect links between nodes

 Smith et al., 2011 ). Partial correlation is calculated by inverting the co-

ariance matrix 
∨
Σ to obtain the precision matrix Ω̂, followed by flipping

he signs of non-diagonal elements and normalization ( Pervaiz et al.,
020 ). Note that partial correlation also varies between [-1, 1] with
ositive values indicating positive correlation and negative values indi-
ating negative correlation, after accounting for all other time series in
he network. 

.2.4. Tikhonov partial correlation coefficient 

In this method, also referred to as L 2 ridge regression, subject pre-
ision matrices are obtained by inverting the covariance matrix after
dding a regularization term Γ = 𝛼𝐼 , where 𝐼 is the identity matrix. The
ubject precision matrix can be written as follows: 

̄ = 

( 

∨
Σ+Γ

) −1 
. 

The scalar 𝛼 determines the strength of the regularization applied.
e optimized 𝛼 separately for each preprocessing variant (Supplemen-

ary Table 1) by minimizing the root mean square distance between
egularized subject precision matrices ( ̄Ω) and the group average of un-
egularized precision matrices ( ̂Ω) following prior work ( Pervaiz et al.,
020 ). 

.2.5. Mutual information (time domain) 

The mutual information is a statistical measure of the shared infor-
ation between two time series. The information content of a given time

eries 𝑋( 𝑡 ) can be defined through its Shannon entropy ( Quiroga et al.,
001 ; Shannon, 1948 ), which is given by 

 ( 𝑋 ) = − 

𝑀 ∑
𝑖 =1 
𝑝 𝑖 .𝑙𝑛 𝑝 𝑖 , 

here 𝑋( 𝑡 ) is partitioned into 𝑀 bins, with 𝑝 𝑖 representing the proba-
ility of the 𝑖 -th bin. Now, the joint entropy between 𝑋( 𝑡 ) and a second
ime series 𝑌 ( 𝑡 ) is defined as 

 ( 𝑋, 𝑌 ) = − 

∑
𝑖,𝑗 

𝑝 𝑋𝑌 
𝑖𝑗 
𝑙𝑛𝑝 𝑋𝑌 

𝑖𝑗 
, 

here 𝑝 𝑋𝑌 
𝑖𝑗 

is the joint probability of 𝑋 = 𝑋 𝑖 and 𝑌 = 𝑌 𝑖 . The mutual
nformation between 𝑋 and 𝑌 is then, 

 𝐼 ( 𝑋, 𝑌 ) = 𝐼 ( 𝑋 ) + 𝐼 ( 𝑌 ) − 𝐼 ( 𝑋, 𝑌 ) . 

We estimated joint and marginal distributions empirically, using the
reedman-Diaconis rule ( Freedman and Diaconis, 1981 ) to determine
he optimal number of bins 𝑀 . No corrections were applied for finite
ample sizes ( Quiroga et al., 2001 ), due to the relatively large sample
ize in the HCP dataset. In order to obtain values in the range [0, 1], we
3 
omputed the normalized mutual information ( Strehl and Ghosh, 2002 )
s 

 𝑀 𝐼 = 

𝑀 𝐼 ( 𝑋, 𝑌 ) √
𝐼 ( 𝑋 ) .𝐼 ( 𝑌 ) 

. 

Thus, the normalized mutual information between two independent
ignals is 0 and has a maximum of 1 for identical signals. While corre-
ation coefficients measure linear relationships, the mutual information
s a statistical measure of both linear and non-linear relationships be-
ween time series. However, mutual information operationalized in this
anner does not exploit the autocorrelation property of time series data.

.2.6. Coherence 

Coherence is a measure of the cross-correlation between two signals
n the frequency domain. At a given frequency 𝜆, the coherence between
he signal of region 𝑖 and the signal of region 𝑗 is given by 

 𝑖𝑗 ( 𝜆) = 

|||𝑓 𝑖𝑗 ( 𝜆) |||2 
𝑓 𝑖𝑖 ( 𝜆) . 𝑓 𝑗𝑗 ( 𝜆) 

, 

here 𝑓 𝑖𝑗 ( 𝜆) is the cross-spectral density between signals 𝑖 and 𝑗, and
 𝑖𝑖 ( 𝜆) and 𝑓 𝑗𝑗 ( 𝜆) are the auto-spectral densities of signal 𝑖 and 𝑗, respec-
ively. Note that 𝐶 𝑖𝑗 ( 𝜆) varies in the interval [0, 1]. 

We evaluated coherence using the MATLAB toolbox for functional
onnectivity ( Zhou et al., 2009 ), in which spectral densities are cal-
ulated using Welch’s averaged, modified periodogram method for all
requencies. The average coherence in the frequency range [0.009Hz,
.08Hz] was used to define connectivity. 

.2.7. Wavelet coherence 

Wavelet coherence is a measure of the correlation between two
ignals in the time-frequency space. It is calculated in a similar man-
er to coherence, but spectral densities are calculated by convolving
ime series with wavelet functions such as the Morlet wavelet function
 Zhang et al., 2016 ), which expand the signal in time-frequency space.
e evaluated wavelet coherence using the Grinsted toolbox with the

efault Morlet wavelet function ( Grinsted et al., 2004 ). Connectivity
as determined by averaging coherence values in the frequency range

0.009Hz, 0.08Hz]. 

.2.8. Mutual information (frequency domain) 

Mutual information can also be evaluated based on coherence in the
requency domain ( Salvador et al., 2005 ), defined for a given frequency
ange [ 𝜆1 , 𝜆2 ] as 

𝑖𝑗 = 

1 
2 𝜋

𝜆2 
∫
𝜆1 
𝑙𝑜𝑔 

(
1 − 𝐶 𝑖𝑗 ( 𝜆) 

)
𝑑𝜆 . 

With a simple transformation, a normalized mutual information in
he range [0, 1] can be obtained as 

𝑖𝑗 = 

[
1 − 𝑒𝑥𝑝 

(
−2 𝛿𝑖𝑗 

)] 1 
2 . 

We used the implementation provided in the MATLAB toolbox for
unctional connectivity ( Zhou et al., 2009 ). Connectivity was deter-
ined by averaging mutual information values in the frequency range

0.009Hz, 0.08Hz]. 
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Table 2 

Overview of functional connectivity estimation measures, 
their range and domain of operation. 

Domain Metric Range 

Time Pearson correlation [-1,1] 
Spearman correlation [-1,1] 
Partial correlation [-1,1] 
Tikhonov partial correlation [-1,1] 
Mutual Information (time) [0,1] 

Frequency Coherence [0,1] 
Mutual Information (frequency) [0,1] 

Time-frequency Wavelet Coherence [0,1] 
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.3. Overview of functional connectivity estimation 

Using the 8 measures described above, we estimated functional con-
ectivity between each pair of preprocessed BOLD times series, re-
ulting in 𝑛 × 𝑛 matrices for each subject, where 𝑛 is the number of
arcels in the parcellation scheme. The estimated networks provide a de-
cription of interactions (edges) among brain regions (nodes) that can
hen be probed for various features of interest using network science
 Bassett and Sporns, 2017 ). 

The 8 metrics evaluated can be broadly classified into categories
ased on their mode of operation. Pearson correlation, Spearman cor-
elation, partial correlation, Tikhonov partial correlation, and mutual
nformation (time) operate in the time domain, whereas coherence
nd mutual information (frequency) operate in the frequency domain,
nd wavelet coherence operates in time-frequency space. For all the
requency-based methods, we evaluated the average connectivity in the
requency range [0.009Hz, 0.08Hz], which is the same frequency range
t which all resting-state scans were bandpass filtered. Full and partial
orrelation metrics fall in the interval [-1, 1], and all the other metrics
all in the interval [0, 1] ( Table 2 ). 

Correlation matrices are typically subjected to Fisher’s r-to-z trans-
ormation to normalize the range of values. Fig. S1 shows that results do
ot change significantly when the transform is applied to the correlation
atrices. Therefore, we report results in the main text without perform-

ng Fisher transforms on any of the matrices, in order to facilitate a more
irect comparison between methods. 

.4. Overview of outcome measures 

We evaluated the sensitivity of each FC metric to subject motion us-
ng 5 benchmarks: residual QC-FC correlations, distance-dependence of
C-FC correlations, test-retest reliability, fingerprinting accuracy, and

ystem identifiability. 

.4.1. Residual QC-FC correlations 

Quality control-functional connectivity (QC-FC) correlations are a
idely used benchmark to evaluate the efficacy of denoising pipelines
pplied in resting-state fMRI connectivity analysis ( Ciric et al., 2017 ;
arkes et al., 2018 ). Here we used this benchmark to evaluate residual
otion artifact for each of the functional connectivity estimates after

pplication of a common denoising pipeline. First, we computed func-
ional connectivity using the 8 metrics described in the previous section,
or the 333-node Gordon and 100-node Schaefer parcellation schemes.

e then computed the partial correlation between functional connectiv-
ty estimates for each edge and the relative mean RMS motion of each
ubject, controlling for subject age and sex, thus obtaining a distribution
f edge-specific correlations with subject motion. From this distribution,
e computed the percentage of edges for which the QC-FC correlations
ere statistically significant (p < 0.05, no correction for multiple com-
arisons). 
4 
.4.2. Distance-dependence of QC-FC correlations 

Motion artifact has been known to have a distance-dependent ef-
ect on FC estimates. Short-range connections are affected by a com-
ination of local and global motion artifact, while long-range connec-
ions tend to be affected only by global artifact ( Power et al., 2015 ;
atterthwaite et al., 2012 ). To quantify this effect, we measured the
orrelation between the absolute values of QC-FC correlations (see
ection 2.4.1 ) and the Euclidean distance separating the centroids of
he node pair associated with each edge. This correlation served as a
enchmark for the distance-dependence of the residual motion artifact.

.4.3. Test-retest reliability 

To evaluate the reliability of functional connectivity estimates, we
omputed the intra-class correlation (ICC) across different resting-state
cans performed on the same subject in the HCP dataset. The intra-class
orrelation coefficient 𝜌 is defined ( Shrout and Fleiss, 1979 ) as 

= 

𝑀 𝑆 𝑏 − 𝑀 𝑆 𝑤 

𝑀 𝑆 𝑏 + ( 𝑛 − 1 ) 𝑀 𝑆 𝑤 
, 

here 𝑀 𝑆 𝑏 is the between-subject mean squared strength of each edge,
 𝑆 𝑤 is the within-subject mean squared strength of each edge, and 𝑛 is

he number of scans per subject, which in this case is 4. 

.4.4. Fingerprinting accuracy 

We estimated the ability of resting-state functional connectivity pro-
les to accurately identify subjects in the HCP cohort using the approach
escribed by Finn and colleagues ( Finn et al., 2015 ). First, we evaluated
ll possible combinations of target and database pairs for the 4 avail-
ble resting-state scans. Next, for each individual scan in the target set,
e computed the similarity of estimated edge weights to all scans in

he database set based on Pearson correlation. The predicted identity
as that with the maximal Pearson correlation. Overall fingerprinting
ccuracy for each target-database pair was then calculated as the frac-
ion of subjects whose identity was successfully predicted by their target
esting-state scans. 

.4.5. System identifiability 

To evaluate the possibility that more motion-resilient FC metrics
ight enable better detection of signals of interest, we consider the out-

ome measure of system identifiability ( Ciric et al., 2017 ; Girvan and
ewman, 2002 ; Newman, 2006 ). We use the term system to refer to
 set of brain regions that are strongly functionally connected; and
e use the phrase system identifiability to refer to the ease with which

uch systems can be detected from functional connectivity matrices.
e employed the modularity quality index, Q, as a measure of sys-

em identifiability. The modularity quality index is a quantification of
he extent to which a network can be subdivided into groups or mod-
les characterized by strong intramodular connectivity and weak inter-
odular connectivity. Such modularity is indicative of the assortative

ommunity structure commonly observed in functional brain networks
 Fortunato, 2010 ; Porter et al., 2009 ). 

We estimated the modularity quality index for each subject’s net-
ork by maximizing the modularity quality function originally defined
y Newman (2006) and subsequently extended to weighted and signed
etworks by Rubinov and Sporns (2011) , among others ( Gómez et al.,
009 ; Traag and Bruggeman, 2009 ). For FC metrics resulting in weights
alling within the interval [0,1], or results estimated from the abso-
ute value of edge weights, we employed the weighted generalization
f the modularity quality index. We first let the weight of a positive
dge between nodes i and j be given by 𝑎 + 

𝑖𝑗 
, and the strength of a node

 , 𝑠 ± 
𝑖 
= ∫
𝑗 

𝑎 ± 𝑖𝑗 , be given by the sum of the positive edge weights of i . We

enote the chance expected within-module edge weights as 𝑒 + 
𝑖𝑗 

for pos-

tive weights where 𝑒 ± 
𝑖𝑗 
= 

𝑠 
± 
𝑖 
𝑠 
± 
𝑗 

𝑣 ± 
. We let the total weight, 𝑣 ± = ∫

𝑖𝑗 

𝑎 ± 
𝑖𝑗 

, be
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d  
he sum of all positive edge weights in the network. Then the weighted
eneralization of the modularity quality index is given by 

 

+ = 

1 
𝑣 + 

∑
𝑖𝑗 

(
𝑎 + 
𝑖𝑗 

− 𝛾𝑒 + 
𝑖𝑗 

)
𝛿𝑀 𝑖 𝑀 𝑗 

, 

here 𝑀 𝑖 is the community to which node i is assigned, and 𝑀 𝑗 is the
ommunity to which node j is assigned. The Kronecker delta function,

𝑀 𝑖 𝑀 𝑗 
, takes on a value of 1 when 𝑀 𝑖 = 𝑀 𝑗 and a value of 0 when

 𝑖 ≠𝑀 𝑗 . The tunable structural resolution parameter, 𝛾, scales the rela-
ive importance of the expected within-module weights (the null model)
nd in practice, the size of the communities; smaller or larger values of
result in correspondingly larger or smaller communities. We used a

ouvain-like locally greedy algorithm ( Blondel et al., 2008 ) as a heuris-
ic to maximize this modularity quality index subject to a partition M of
odes into communities. 

For FC metrics resulting in weights falling in the interval [-1,1],
pecifically full and partial correlations, we employed the asymmet-
ically weighted generalization of Q suitable for networks containing
egative weights ( Rubinov and Sporns, 2011 ). Specifically, we follow
ubinov and Sporns (2011) by first letting the weight of a positive edge
etween nodes i and j be given by 𝑎 + 

𝑖𝑗 
, the weight of a negative edge

etween nodes i and j be given by 𝑎 − 
𝑖𝑗 

, and the strength of a node i ,

 

± 
𝑖 
= ∫
𝑗 

𝑎 ± 𝑖𝑗 , be given by the sum of the positive or negative edge weights

f i . We denote the chance expected within-module edge weights as 𝑒 + 
𝑖𝑗 

or positive weights and 𝑒 − 
𝑖𝑗 

for negative weights, where 𝑒 ± 
𝑖𝑗 
= 

𝑠 
± 
𝑖 
𝑠 
± 
𝑗 

𝑣 ± 
. We

et the total weight, 𝑣 ± = ∫
𝑖𝑗 

𝑎 ± 
𝑖𝑗 

, be the sum of all positive or negative

dge weights in the network. Then an asymmetric signed generalization
f the modularity quality index can be written as 

 

∗ = 

1 
𝑣 + 

∑
𝑖𝑗 

(
𝑎 + 
𝑖𝑗 

− 𝛾𝑒 + 
𝑖𝑗 

)
𝛿𝑀 𝑖 𝑀 𝑗 

− 

1 
𝑣 + + 𝑣 − 

∑
𝑖𝑗 

(
𝑎 − 
𝑖𝑗 

− 𝛾𝑒 − 
𝑖𝑗 

)
𝛿𝑀 𝑖 𝑀 𝑗 

, 

here 𝑀 𝑖 , 𝑀 𝑗 , 𝛿𝑀 𝑖 𝑀 𝑗 
, and 𝛾 are defined as above. 
5 
We examined average Q for each FC metric as a measure of system
dentifiability, as well as the partial correlation between Q and mean
elative RMS for each subject while controlling for average network
eight, age, and sex. Additionally, we addressed two potential con-

ounds that have not been previously addressed in work examining Q
s a measure of system identifiability: the number of communities k de-
ected during modularity maximization, and the mean and distribution
f edge weights in a given network (see Supplementary Methods for
etails). 

. Results 

.1. Characteristics of FC matrices computed using different methods 

We first characterized the functional connectivity edge weights es-
imated using different methods. Fig. 1 shows pairwise scatterplots be-
ween edge weights computed using all 8 methods. These plots show
he non-linear relationships between edges estimated using full or par-
ial correlation and non-correlation based methods. Of particular inter-
st is the mapping from negative edges in full correlation to others. For
nstance, the weights of negative edges in Pearson matrices have an in-
erse relationship with the weights of edges in wavelet coherence ma-
rices – the more negative a Pearson edge weight, the higher its wavelet
oherence edge weight. In Fig. 2 , FC matrices estimated using different
ethods are displayed as heatmaps, with canonical systems in the Gor-
on parcellation highlighted in the x and y color bars. Modular structure
an clearly be seen in all matrices, with clean delineation of canonical
ystems in all matrices. Further, in full correlation matrices, and to a
esser extent in partial correlation matrices, well known negative asso-
iations are apparent, for instance between the default mode and dorsal
ttention systems ( Buckner and DiNicola, 2019 ). 

.2. Full correlation shows high residual QC-FC correlations 

Next, we evaluated the sensitivity of edge weights (computed using
ifferent methods) to subject motion. We used the residual QC-FC corre-
Fig. 1. Edge weight correlations for different 
FC metrics. Pairwise scatter plots between edge 
weights calculated using different FC meth- 
ods. Diagonal entries show histograms of edge 
weights. Results are shown for the REST1_LR 
scan, with FC estimated using the 333-node 
Gordon parcellation. 
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Fig. 2. FC matrices using different estimation 
methods. Edge weight heatmaps are shown for 
the 333-node Gordon parcellation, with canon- 
ical systems labeled as colored bars. Each en- 
try in the heatmap is the average edge weight 
across 778 subjects in the REST1_LR scans, 
estimated using (A) Pearson correlation, (B) 
Spearman correlation, (C) partial correlation, 
(D) Tikhonov partial correlation, (E) coher- 
ence, (F) wavelet coherence, (G) mutual infor- 
mation (frequency), and (H) mutual informa- 
tion (time). (I) Canonical systems for the Gor- 
don parcellation displayed on the HCP S1200 
group average cortical surface. 
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ation benchmark, which measures the edgewise relationship between
he relative mean RMS motion of each subject and their estimated edge
eights, after the application of denoising pipelines. 

Our findings are summarized in Fig. 3 . Specifically, panels A–D of
ig. 3 show the fraction of edges for which the QC-FC correlations
re statistically significant (p < 0.05, no correction for multiple compar-
sons). Significantly, partial correlation and Tikhonov partial correlation
re the best-performing FC methods, full correlation methods including
earson and Spearman correlation are the worst-performing FC meth-
ds, and coherence- and mutual information-based metrics fall in be-
ween. Results largely remain similar when GSR and bandpass filtering
re not applied, with the caveat that all FC methods other than par-
ial correlation perform equally badly without the application of GSR. If
nly the absolute values of edge weights are taken or if negative edges
re set to zero, the performance of Pearson correlation improves, but is
till worse than other measures; similar trends are seen when correla-
ions are not corrected for age and sex (Fig. S1). Results remain largely
imilar when motion is estimated using bandpass-filtered mean frame-
ise displacement (Fig. S2). Further, the phase-encoding direction does
ot appear to have much impact on the number of edges significantly
ffected by motion (Fig. S3). Fig. 3 E shows the distribution of QC-FC
orrelations for each FC estimation method. The distribution for full
orrelation methods is wider than for other methods, confirming that
ore edges are significantly associated with motion. 

.3. Motion differentially affects putative cognitive systems 

Next, we analyzed the amount of motion artifact in edges connect-
ng regions within specific putative cognitive systems. Fig. 4 shows
eatmaps of QC-FC correlations for all edges in the Gordon parcella-
ion, arranged by the associated a priori defined systems ( Gordon et al.,
016 ). Heatmaps of QC-FC correlations averaged for each system pair
re shown in Fig. S4. We also computed pairwise inter- and intra-
6 
ommunity QC-FC correlations and rank-ordered them by their median
alues. The six highest ranked inter-community QC-FC correlations are
hown in Fig. 5 . QC-FC correlations only within intra-system connec-
ions along with intra-network edge lengths and network sizes of all
ub-networks in the Gordon parcellation are shown in Fig. S5. We did
ot include the ‘uncertain’ network (representing brain regions not as-
igned to any network due to susceptibility artifact) in this analysis. 

Our analysis reveals a number of interesting details about the dif-
erential vulnerability of brain systems to motion artifact. Edges within
he default mode (D-D) and the retrosplenial temporal systems (RT-RT)
ppear to be especially vulnerable to motion artifact in most FC estima-
ion methods except partial correlation methods ( Figs. 5 and S5). The
ncreased vulnerability of the default and retrosplenial temporal net-
orks to motion artifact does not appear to be due to the particular
istribution of edge lengths within those networks. Intra-network edges
n other sub-networks with similar intra-network edge lengths like the
uditory and frontoparietal networks are notably less correlated with
otion (Fig. S5). For full correlation methods, edges between cingulo-

percular and visual (CO-V), and between default and visual (D-V) sys-
ems have high QC-FC correlations but are not affected as much in the
ther FC measures. 

.4. Distance-dependence of motion artifact 

Next, we evaluated the distance-dependence of motion artifact by
easuring edgewise correlations between the Euclidean distance be-

ween nodes and the edge’s absolute QC-FC correlation value. We find
hat edges estimated using full correlation have higher positive distance-
ependence than other methods for most preprocessing variants, imply-
ng that long-distance edges are more affected by motion than short-
istance edges ( Fig. 6 ). It is to be noted that the distance-dependence of
C-FC correlations is overall quite low ( Ciric et al., 2017 ), which likely

eflects the stringent preprocessing protocol employed. 
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Fig. 3. Full correlation shows higher resid- 
ual QC-FC correlations. (A–D) Fraction of 
edges significantly associated with motion 
for all 4 resting-state scans, estimated us- 
ing the 333-node Gordon parcellation and the 
100-node Schaefer parcellation. Different pan- 
els show results from different preprocess- 
ing variants defined by the inclusion or ex- 
clusion of global signal regression (GSR) and 
bandpass filtering. Metric names are short- 
ened as follows: P = Pearson, S = Spearman, 
PC = Partial Correlation, TC = Tikhonov Partial 
Correlation, C = Coherence, WC = Wavelet Co- 
herence, MIF = Mutual Information (frequency), 
and MIT = Mutual Information (time). Each plot 
contains 4 data points, one for each resting- 
state scan. Notches represent the mean and er- 
ror bars show the standard deviation. (E) His- 
tograms of QC-FC correlations for all estima- 
tion methods. Note the wider distributions for 
edge weights computed using full correlation 
(Pearson and Spearman correlation). 
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.5. Reliability of functional connectivity estimates 

To estimate the reproducibility in functional connectivity estimates
ith different methods, we measured the intra-class correlation across
 resting-state scans in the HCP dataset. Fig. 7 shows that the intra-class
orrelations are highest for edges estimated using full correlation and
owest for edges estimated using partial correlation, for most prepro-
essing variants. The relatively high reliability of full correlation edges
ould be due to accurate estimates of trait-like biology or could be due
o sensitivity to a highly reliable third-party variable, such as motion.
o determine whether the latter could be the case, we evaluated the re-

iability of subject motion. We found that the intra-class correlation for
elative RMS motion was also high (0.72), indicating that motion itself
s reproducible across scans. In order to separate the reproducibility of
otion from reproducibility of FC edges, we re-computed the intra-class

orrelations for edges that were in the bottom 20% of absolute QC-FC
orrelation values in all 4 scans. This analysis showed that results re-
 t  

7 
ained largely similar after mitigating the influence of reliable motion,
ndicating that edges estimated using full correlation are more repro-
ucible over this time scale than edges estimated using other methods
Fig. S6). 

Next, we evaluated the ability of resting-state functional connec-
ivity estimates to reliably predict subject identity using the measure
f fingerprinting accuracy. Fig. 8 shows that fingerprinting accuracy
s comparably high among full correlation, coherence, and mutual in-
ormation metrics, but is quite low among partial correlation metrics
hen bandpass filtering is applied. Interestingly, partial correlation met-

ics show high fingerprinting accuracy when bandpass filtering is not
pplied. 

.6. System Identifiability 

Functional brain networks are organized into systems, or modules,
hat are indicated by strong intramodular connectivity and weak in-
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Fig. 4. Distribution of QC-FC correlations 
across functional brain networks. QC-FC corre- 
lation heatmaps are shown for the REST1_LR 
scan, for the 333-node Gordon parcellation, 
and with canonical a priori defined systems 
labeled as colored bars. Each entry in the 
heatmap is the absolute value of the QC-FC cor- 
relation (across subjects), with edge weights 
estimated using (A) Pearson correlation, (B) 
Spearman correlation, (C) partial correlation, 
(D) Tikhonov partial correlation, (E) coher- 
ence, (F) wavelet coherence, (G) mutual infor- 
mation (frequency), and (H) mutual informa- 
tion (time). (I) Canonical systems for the Gor- 
don parcellation displayed on the HCP S1200 
group average cortical surface. 

Fig. 5. System affiliations of edges highly 
impacted by motion. Boxplots of inter- 
system QC-FC correlations are shown for the 
REST1_LR scan and the 333-node Gordon 
parcellation. All inter-system edges were 
rank-ordered by their median absolute QC-FC 
correlation, and the top 6 ranking distributions 
are shown for each FC metric. CO = cingulo- 
opercular; CP = cingulo-parietal; D = default; 
DA = dorsal attention; FP = fronto-parietal; 
RT = retrosplenial temporal; SH = sensory, 
motor, hand; SM = sensory, motor, mouth; 
S = salience: VA = ventral attention; V = visual. 
Note that the ‘None’ system representing 
nodes not assigned to any sub-network due to 
susceptibility artifact is not included in this 
analysis. 
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ermodular connectivity ( Fortunato, 2010 ; Porter et al., 2009 ). A large
ody of literature has characterized this quintessential principle of brain
etwork organization, commonly detecting between 6 and 8 systems
 Smith et al., 2009 ; Thomas Yeo et al., 2011 ; Uddin et al., 2019 ). Thus,
e examined the extent to which different metrics of FC resulted in
ifferent levels of system identifiability, as operationalized by the mod-
8 
larity quality index Q , which captures how separable a network is into
oherent modules or systems ( Bertolero et al., 2015 ; Newman, 2006 ;
porns and Betzel, 2016 ). Fig. 9 shows that on average, our measure
f system identifiability, the modularity quality index Q , is highest in
ystems estimated using full correlation, lowest in all non-correlation
ased methods and intermediate for partial correlation. 



A.S. Mahadevan, U.A. Tooley, M.A. Bertolero et al. NeuroImage 241 (2021) 118408 

Fig. 6. Distance-dependence of QC-FC corre- 
lations. Residual distance-dependence of mo- 
tion artifact for all 4 resting-state scans, es- 
timated using the 333-node Gordon parcel- 
lation and the 100-node Schaefer parcella- 
tion. Panels (A)–(D) show results from differ- 
ent preprocessing variants defined by the in- 
clusion or exclusion of global signal regression 
(GSR) and bandpass filtering. Metric names are 
shortened as follows: P = Pearson, S = Spearman, 
PC = Partial Correlation, TC = Tikhonov Partial 
Correlation, C = Coherence, WC = Wavelet Co- 
herence, MIF = Mutual Information (frequency), 
and MIT = Mutual Information (time). Each plot 
contains 4 data points, one for each resting- 
state scan. Notches represent the mean and er- 
ror bars show the standard deviation. 

Fig. 7. Test-retest reliability of edge weights 
for different FC metrics. Intra-class correla- 
tion for all edge weights across 4 resting-state 
scans, estimated using the 333-node Gordon 
parcellation and the 100-node Schaefer par- 
cellation. Violin plots show the distribution 
of intra-class correlation values across all sub- 
jects. Panels A–D show results from different 
preprocessing variants defined by the inclu- 
sion or exclusion of global signal regression 
(GSR) and bandpass filtering. Metric names are 
shortened as follows: P = Pearson, S = Spearman, 
PC = Partial Correlation, TC = Tikhonov Partial 
Correlation, C = Coherence, WC = Wavelet Co- 
herence, MIF = Mutual Information (frequency), 
and MIT = Mutual Information (time). 
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The relatively high system identifiability in metrics based on full
orrelation could be due to an accurate sensitivity to the biology of
utative cognitive systems or could be due to motion impacting re-
ions of the brain in a spatially heterogeneous manner that partially
rives the data-driven identification of systems. To address these pos-
ibilities, we studied the relation between Q and motion. We find
hat the relationship between Q and motion is also strongest in full
orrelation compared to all other FC metrics, even when controlling
or average weight, age, and sex ( Fig. 10 ). Without the application
f bandpass filtering, partial correlation methods also show a strong
elationship between Q and motion, but the relationship between Q
9 
nd motion was similar among all FC methods without application of
SR. 

We also estimated Q from networks containing only the absolute val-
es of edge weights, which reduces but does not eliminate differences in
ystem identifiability between correlation-based metrics and other met-
ics (Fig. S7). To ensure that differences in system identifiability were
ot driven by differences in the functional systems detected when max-
mizing the modularity quality index , we also calculated Q using the
anonical system partition associated with each of our 2 parcellations
nd obtained similar results (Fig. S7). Further, relationships between Q
nd motion remained similar when not corrected for age and sex, and
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Fig. 8. Resting-state functional connectivity 
fingerprinting accuracy for different FC met- 
rics. Accuracy of fingerprinting using 12 
combinations of database and target pairs 
from 4 resting-state scans, estimated using 
the 333-node Gordon parcellation and the 
100-node Schaefer parcellation. Panels A–
D show results from different preprocessing 
variants defined by the inclusion or exclu- 
sion of global signal regression (GSR) and 
bandpass filtering. Metric names are short- 
ened as follows: P = Pearson, S = Spearman, 
PC = Partial Correlation, TC = Tikhonov Partial 
Correlation, C = Coherence, WC = Wavelet Co- 
herence, MIF = Mutual Information (frequency), 
and MIT = Mutual Information (time). Each plot 
contains 12 data points, one for each combina- 
tion of database and target pairs. Notches rep- 
resent the mean and error bars show the stan- 
dard deviation. 

Fig. 9. System identifiability is highest for 
full correlation. The modularity quality index 
Q is highest in networks estimated using 
full correlation, lowest for non-correlation 
based metrics and intermediate for partial 
correlation. Modularity maximization was 
tuned across subjects to estimate between 6 
and 8 communities for each metric. Panels 
A-D show results from different preprocessing 
variants defined by the inclusion or exclu- 
sion of global signal regression (GSR) and 
bandpass filtering. P = Pearson, S = Spearman, 
PC = Partial Correlation, TC = Tikhonov Partial 
Correlation, MIT = Mutual Information (time), 
C = Coherence, WC = Wavelet Coherence, 
MIF = Mutual Information (frequency). Each 
plot contains 4 data points, one for each 
resting-state scan. Notches represent the mean 
and error bars show the standard deviation. 
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hen motion was calculated as mean FD using bandpass filtered realign-
ent estimates (Fig. S7). 

To further ensure that results were not driven by variability in edge
eight distributions across FC metrics, we examined two boundary cases

rom prior results as the FC metrics of interest: Pearson correlation and
avelet coherence. We reordered the edge weight values in our values

atrix (see Supplementary Methods) to reflect the rank order of weights
n the ranks matrix. This process preserves the topology of the network
ontained in the ranks matrix while ensuring that both the average edge
eight and distribution of edge weights are the same as those in the

alues network. We estimated the modularity quality index Q of these
eordered matrices and found that Q was consistently higher when the
ank ordering matrix was derived from Pearson correlations ( Fig. 11 ).
aken together, these results suggest that correlation-based FC metrics
onsistently result in higher levels of system identifiability, and that they
ay better reflect the modular architecture of functional brain networks

han other methods. 

a  

10 
. Discussion 

In this report, we systematically investigated the sensitivity to mo-
ion of 8 different FC estimation measures drawn from the correlation,
oherence, and mutual information families, based on their performance
n commonly used benchmarks. The context, implications, and limita-
ions of our results are discussed below. 

.1. Clear distinction between correlation-based FC measures and other 

easures 

Our main finding is that FC edges estimated using full correlation
esult in a high fraction of edges significantly correlated with motion and
 relatively high distance-dependence of motion artifact compared to
ll other methods. By contrast, using partial correlation methods almost
ompletely eliminated the relationship between estimated edge weights
nd motion as well as their distance-dependence. These results were
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Fig. 10. Modularity quality index is highly related to motion in full correlation metrics. Partial correlation between Q and mean relative RMS, controlling for average 
network weight, age, and sex. Edges estimated using full correlation show large negative correlations between subject motion and Q. Panels A–D show results from 

different preprocessing variants defined by the inclusion or exclusion of global signal regression (GSR) and bandpass filtering. P = Pearson, S = Spearman, PC = Partial 
Correlation, TC = Tikhonov Partial Correlation, MIT = Mutual Information (time), C = Coherence, WC = Wavelet Coherence, MIF = Mutual Information (frequency). Each 
plot contains 4 data points, one for each resting-state scan. Notches represent the mean and error bars show the standard deviation. 
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argely maintained when global signal regression and bandpass filtering
ere not applied. 

Head motion artifact predominantly manifests as spurious sig-
al fluctuations in BOLD signal across multiple voxels in the brain
 Ciric et al., 2018 ; Power et al., 2015 ). Since traditional functional con-
ectivity based on full correlation measures temporal covariance, it fol-
ows that such measures of connectivity are directly impacted by arti-
actual covariance introduced by head motion. Partial correlation esti-
ates, on the other hand, measure the temporal covariance between

ime series after regressing out all other time series in the network,
hereby eliminating shared covariance induced by head motion artifact.
mong the other FC methods we evaluated, coherence-based FC mea-
ures quantify statistical dependencies in the frequency domain, includ-
ng phase locking and correlation in power spectra. We also evaluated
utual information in the frequency domain ( Salvador et al., 2005 ),
hich is an information theoretic measure of relationships in the fre-
uency domain. Frequency-based FC measures are less likely to be in-
uenced by short-lived temporal fluctuations in the BOLD signal. Taken
ogether, our findings indicate that the statistical properties of full cor-
elation render them relatively more sensitive to temporal outliers in-
roduced by head motion, an effect that is reduced by using frequency-
ased connectivity estimation, and effectively eliminated by regressing
ut common sources of artifact through partial correlation. 

In our study, we averaged frequency-based connectivity estimates
coherence, wavelet coherence, and mutual information in frequency)
ithin a low frequency band (0.009–0.08Hz). Although information
n the power spectral properties of motion artifact is limited, some
rior studies have shown that motion affects the spectral power and
onnectivity estimates mainly at high frequencies ( Kim et al., 2014 ;
alvador et al., 2008 ; Satterthwaite et al., 2013a ). It is therefore pos-
ible that averaging connectivity estimates within a low frequency band
educed the impact of high-frequency motion artifact in these measures.
11 
urther, if motion artifact manifested in any one given frequency, the
rocess of averaging in multiple frequency bands may have diluted the
verall impact of motion on the FC estimates. 

While much previous work has shown the utility of bandpass filter-
ng fMRI time series to mitigate motion effects ( Caballero-Gaudes and
eynolds, 2017 ; Power et al., 2014 ; Satterthwaite et al., 2013b ), the
hape and design of the implemented filter are important considerations,
specially while evaluating FC measures in the frequency domain. For
nstance, Butterworth filters have been known to introduce edge effects,
rtifacts that can be mitigated by discarding volumes before and after
he cutoff bands ( Caballero-Gaudes and Reynolds, 2017 ; Power et al.,
014 ). Bandpass filtering using higher-order filters may also introduce
purious oscillations close to the cutoff frequencies ( de Cheveigné and
elken, 2019 ). Care must be taken to ensure that such artifacts do not
dversely impact the calculation of frequency-based estimates of con-
ectivity. 

We found that the performance of Pearson correlation on the QC-FC
enchmark improved when taking the absolute values of edge weights,
nd when negative edges were set to zero (Fig. S1). Analysis of fully
onnected complex networks with positive and negative weights can
e rigorously performed ( Rubinov and Sporns, 2011 ). However, the in-
erpretation of negative correlations is controversial, especially in the
ontext of global signal regression ( Anderson et al., 2011 ; Chai et al.,
012 ; Murphy and Fox, 2017 ). As a result, many studies omit negative
dges from analyses of functional and dynamic connectivity ( Chan et al.,
014 ; Grady et al., 2016 ). Our results indicate that omitting negative
dges or taking their absolute values might also reduce the susceptibil-
ty to motion artifact, although it is also possible that this step decreases
ensitivity to individual differences. 

The systems whose edges were most affected by motion differed
mong FC estimation methods. For instance, connections between large-
cale systems such as the default mode, cingulo-opercular and visual
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Fig. 11. A correlation-based metric results in higher system identifiability even 
when using edge weight ranks rather than edge weight values. (A, B) Holding 
the edge weight value distribution constant, higher Q is found when using the 
ranks of edge weights of a time-based metric (Pearson) than a time-frequency- 
based metric (Wavelet Coherence). Datapoints where values network and ranks 
network are the same (e.g. Pearson values-Pearson ranks) recapitulate results in 
Fig. 9 A and are shown for ease of comparison. Notches represent the mean and 
error bars show the standard deviation. 
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ystems were correlated with motion in full correlation but not in other
C methods. In contrast, within-system edges in the default mode sys-
em and retrosplenial temporal cortex were strongly related to motion
n all FC estimation methods other than partial correlation methods.
his last result deserves attention, given the large number of scientific
ypotheses surrounding the brain’s default mode system ( Buckner and
iNicola, 2019 ; Fox and Raichle, 2007 ). 

The strong relationship between motion and default mode connec-
ivity is unlikely solely due to geometry because other networks whose
dges are less correlated with motion, including the frontoparietal sys-
em, are similarly distributed with anterior and posterior nodes on both
edial and lateral surfaces, with similar intra-network edge lengths. It is
ossible that individuals with specific patterns of default mode connec-
ivity find it more difficult to remember to stay still as their minds wan-
er ( Christoff et al., 2009 ; Golchert et al., 2017 ; Kajimura et al., 2016 ).
etrosplenial cortex, another system that we found to have a strong re-

ationship with motion, is often functionally integrated with the default
12 
ode system to support memory processes, but also plays a role in spa-
ial navigation and locomotion ( Fischer et al., 2020 ; Mao et al., 2020 ;
ann et al., 2009 ). Specifically, retrosplenial cortex integrates vestibular

nput, which encodes head position, with visual cortex, to calibrate self-
otion with visual motion signals ( Chaplin and Margrie, 2020 ; Vélez-

ort et al., 2018 ). Our findings highlight the need to carefully consider
he confounding effects of motion, as well as the causes of motion, while
tudying these systems. 

Significantly, full correlation methods scored highest and partial cor-
elation methods scored lowest on test-retest reliability and fingerprint-
ng accuracy. While the high reliability of edges estimated using full
orrelation was partly caused by the well-known reproducibility of mo-
ion itself ( Noble et al., 2019 ; van Dijk et al., 2012 ), we observed similar
esults when restricting our analysis to the 20% of edges with the low-
st absolute QC-FC correlations for all 4 scans. This additional finding
uggests that full correlation, while highly sensitive to motion, leads to
elatively reproducible functional connectivity estimates. On the other
and, edges estimated using partial correlation, while not associated
ith motion, vary highly between scans. 

Perhaps surprisingly, full correlation resulted in significantly higher
ystem identifiability than other measures. This observation suggests
hat findings of higher system identifiability in full correlation methods
re not solely driven by motion, and that these metrics, while highly
otion-sensitive, might excel in detecting coherent community struc-

ure. Alternatively, these findings may hint that the well-established
nding of a modular architecture in human functional brain networks
ay be relatively metric-dependent ( Bertolero et al., 2015 ; Sporns and
etzel, 2016 ). 

The success with which correlation-based measures detect modular
rchitecture may be due to the presence of negative edge weights or
nticorrelations in these measures, which contribute to reducing inter-
odule connections in calculations of modularity quality. A negative

dge calculated using Pearson correlation, for instance between the
efault mode and dorsal attention systems, reduces the overall inter-
odule connectivity, crystallizing the boundaries between modules.
owever, the same edge calculated using coherence is highly posi-

ive, increasing inter-module connectivity and obfuscating boundaries
etween modules. Further, taking absolute values of correlation-based
dges acts as a similar transformation, converting negative edges to pos-
tive edges, reducing the modularity quality index. The presence of neg-
tive edges or anticorrelation between internal and external attention
ystems has been argued to reflect a functional toggle between sys-
ems ( Chai et al., 2012 ; Clare Kelly et al., 2008 ; Gao and Lin, 2012 ;
urphy et al., 2019 ; Owens et al., 2018 ). It is therefore unclear which
ethod best captures true interactions between systems. Indeed, both

ould reflect complementary aspects of network dynamics if dorsal at-
ention activation lags default mode activation at a consistent delay. 

.2. Implications for researchers 

We have shown that moving away from standard FC metrics based
n full correlation can improve the robustness of FC estimates to head
otion. However, full correlation excels at detecting community struc-

ure and is highly reliable. Our findings indicate that the FC estimation
ethod should be chosen carefully based on the nature of the study. For

nstance, studies on group comparisons, where motion artifact can in-
roduce systematic bias in connectivity estimates ( Power et al., 2015 ),
ould benefit from using frequency-based FC estimation methods like
oherence. The appropriate choice for studies on modular brain archi-
ecture, in contrast, might remain full correlation. Notably, partial cor-
elation offers a best-of-both-worlds option – low contamination by mo-
ion artifact and relatively high system identifiability, with the caveat of
ow reliability. Our results also highlight a spatial heterogeneity in the
mpact of motion. FC edges in the default mode and retrosplenial cortex
ere especially sensitive to the effects of motion. Studies that explore

he fine-scale organization and function of these networks could bene-
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t from exploring different choices of FC estimation. Finally, full and
artial correlation methods are computationally less expensive than the
est of the measures reported here and might therefore be preferable for
arge datasets where computational time is at a premium. 

.3. Limitations 

It is prudent to mention several limitations of our study. First, the
ack of a noise-free ground truth is a challenge while estimating the
mpact of motion artifact in real fMRI data. It is difficult to separate
ut true signal from noise in fMRI data, a challenge further compli-
ated by findings that head motion is a stable trait, and likely related
o an individual’s physiology and neural dynamics ( Beyer et al., 2020 ;
ngelhardt et al., 2017 ). Even our estimation of system identifiability
acks a true ground truth, as much prior work on systems in functional
rain networks has employed correlation-based metrics, though newer
tudies using direct intracranial recordings also recover coherent modu-
ar structure in functional brain networks ( Betzel et al., 2019 ). Second,
ue to the lack of ground truth, it is necessary to rely on indirect bench-
arks such as QC-FC correlations and QC-FC distance-dependence. Cen-

ral to the computation of these benchmarks is the estimation of an av-
rage measure of head motion for the whole scan from realignment es-
imates ( Power et al., 2015 ). This average measure can miss important
patiotemporal details of motion. Future studies could use voxel-wise
isplacement maps to extract more detailed information about motion
nd its impact on FC ( Satterthwaite et al., 2013a ). Third, we used data
rom the Human Connectome Project that was preprocessed using ICA-
IX. This denoising approach has been shown to be particularly effective
ith HCP data ( Salimi-Khorshidi et al., 2014 ). In the future, it might be
eneficial to investigate the effect of varying FC estimation methods
ith more noisy datasets with different denoising pipelines. Further,
ecause we imposed a fairly stringent motion exclusion threshold, it is
nclear whether our results generalize to samples with higher motion
ncluding pediatric, geriatric, or psychiatric samples. Finally, we did not
valuate FC estimation methods from many statistical families, includ-
ng Bayes nets, Granger causality, and generalized synchronization. Fu-
ure studies could investigate additional families of FC estimation meth-
ds omitted from this study. 

. Citation diversity statement 

Recent work in several fields of science has identified a bias in
itation practices such that papers from women and other minority
cholars are under-cited relative to the number of such papers in the
eld ( Caplar et al., 2017 ; Dion et al., 2018 ; Dworkin et al., 2020 ;
aliniak et al., 2013 ; Mitchell et al., 2013 ). Here we sought to proac-

ively consider choosing references that reflect the diversity of the field
n thought, form of contribution, gender, race, ethnicity, and other
actors. First, we obtained the predicted gender of the first and last
uthor of each reference by using databases that store the probabil-
ty of a first name being carried by a woman ( Dworkin et al., 2020 ;
hou et al., 2020 ). By this measure (and excluding self-citations to
he first and last authors of our current paper), our references con-
ain 12.34% woman(first)/woman(last), 10.28% man/woman, 22.62%
oman/man, and 54.76% man/man. This method is limited in that

a) names, pronouns, and social media profiles used to construct the
atabases may not, in every case, be indicative of gender identity and
b) it cannot account for intersex, non-binary, or transgender people.
econd, we obtained predicted racial/ethnic category of the first and last
uthor of each reference by databases that store the probability of a first
nd last name being carried by an author of color ( Ambekar et al., 2009 ;
ood and Laohaprapanon, 2018 ). By this measure (and excluding self-
itations), our references contain 7.42% author of color (first)/author
f color(last), 11.39% white author/author of color, 27.14% author
f color/white author, and 54.05% white author/white author. This
ethod is limited in that (a) names and Florida Voter Data to make
13 
he predictions may not be indicative of racial/ethnic identity, and (b)
t cannot account for Indigenous and mixed-race authors, or those who
ay face differential biases due to the ambiguous racialization or ethni-

ization of their names. We look forward to future work that could help
s to better understand how to support equitable practices in science. 
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